Product Detail

Note: Fill the Name, Email and Mobile to get unlock the price list...!!!!

Round off And Truncate the Following Numbers to the Four Decimal Places

University  Amity blog
Service Type Assignment
Course
Semester
Short Name or Subject Code COMPUTER ORIENTED NUMERICAL ANALYSIS
Product of Assignment (Amity blog)
Pattern Section A,B,C Wise
Price
Click to view price

 
        
 
         
     
COMPUTER ORIENTED NUMERICAL ANALYSIS


ASSIGNMENT-A


Solve the following set of equation by Gauss elimination method.
               2x +3y+4z=12
               3x + y +z=4
               x+4y+z=5


                       
                                 


Find the rate of convergence of Newton Raphson method. Solve by www.solvezone.in 

4.           Define error, relative error and absolute error, give example of each.


ASSIGNMENT-B
1. a) Round off and truncate the following numbers to the four decimal places.
                  a) 132.59839
                             Solution     round off - 132.5984
                                                 truncate   - 132.5983
                  b) 0.073729
                             Solution     round off - 0.0737
                                                 truncate   - 0.0737

                   c) 9528.26058
                             Solution      round off - 9528.2606
                                                 truncate   - 9528.2605

    
b) Find the route of equation 2x² -5x-1=0 by using bisection method. Perform 5 steps.

2. Solve the following equation by Jacobi method. Perform three steps.
 x₁-2x₂-x₃-x₄=3
-2x₁ + x₂-x₃ -x₄=15
x₁ – x₂ + x₃ -2x₄ =27
-x₁ -x₂-2x₃+x₄ =-9

For a given data
 
X    F(x)       
1    33       
2    50       
3    69       
4    90       
5    129     

Find the value of f(x) at 1.4

Choose 4 card at random from standard 52 card deck. What is the probability that two kings and two ace will be chosen.


 
             
ASSIGNMENT C


1. The order of convergence of Newton-Raphson method is
 (A): 2
 (B): 3
 (C): 0
 (D): 1

2. One of the roots of the equation x3-3x2+x-3=0  is
 (A): -1
 (B): 1
 (C): √3
 (D): 3

3. The solution to the set of equations:
25x+y+z=25; 64x+8y+z=71; 114x+12y+z=155
The most nearly value of ??,??,??=
 (A): (1,1,1)
 (B):  (1,-1,1)
 (C):  (1,1,-1)
 (D):  Does not have a unique solution

4. The order of convergence of Regula-falsi method is
 (A): 1.235
 (B): 3.141
 (C): 1.618
 (D): 2.792

5. Newton’s iterative formula to find the value of √N is
  
6. The Newton-Raphson method fails when
 
7. The one of the root of the equation x^3-4x-9=0 using bisection method is
 (A): 2.5065
 (B): 2.6066
 (C): 2.7066
 (D): 3.5066

8. Which of the following is increasing order of convergence method for finding roots
 (A):  Bisection, regula-falsi, newton Raphson
 (B): Regula-falsi, Bisection, Newton Raphson
 (C): Newton Raphson, Regula falsi, bisection
 (D): Bisection, Newton Raphson, regula-falsi

9. If X is a true value and  X is its approximate value then absolute error ea  is
  
10. If X is a true value and  X is its approximate value then Relative error er is
  
11. Any quadratic equation f(x)=0 has
 (A): One root
 (B): Two roots
 (C): Three roots
 (D): Four roots

12. An equation such as tanx=x has
 (A): Zero roots
 (B): One root
 (C): Two roots
 (D): Infinite roots

13. The roots of an equation f(x)=x^3-x-1=0 lies between
 (A): f(2)  and f(3)
 (B): f(3)  and f(4)
 (C): f(1)  and f(2)
 (D): All of these

14. The real roots of an equation f(x)=xex-2=0 using newton Raphson method is
 (A): 0.5682
 (B): 0.8526
 (C): 0.3525
 (D): 1.5000


15. Given n+1 data pairs (x_0,y_0),(x_1,y_1),… (x_n,y_n). The process of finding the value of y corresponding to any value of x (between x_0 and x_n) is called
 (A): Extrapolation
 (B): Interpolation
 (C): Differentiation
 (D): Integration

16. Given n+1 data pairs (x_0,y_0),(x_1,y_1),… (x_n,y_n). The process of finding the value of y corresponding to any value of x (outside of the range  x_0 and x_n) is called
 (A): Extrapolation
 (B): Interpolation
 (C): Differentiation
 (D): Integration

17. Given n+1 data pairs (x_0,y_0),(x_1,y_1),… (x_n,y_n). The n^(th )  forward difference is
 (A): ?n yr=?(n-1) y(r+1)-?(n-1) yr
 (B): ?n yr=?(n-1) y(r+1)-?(n-1) yr
 (C): ?^n y_r=?^n y_(r+1)-?^n y_r
 (D): ?^n y_r=?^n y_r-?^(n-1) y_(r-1)

18. If ? is forward difference operator and E is a shift operator then
 (A): ?=E-1
 (B): ?=E+1
 (C): E=?-1
 (D): None of these

19. If δ is central difference operator and E is a shift operator then
  
20. The rate of convergence of Bisection method for finding roots is
 (A): 2
 (B): 3
 (C): 1.5
 (D): 1.0

21. A second degree polynomial passes through (0,1),(1,3), (2,7), (3,13), then the polynomial f(x) is
  
22. Given data pairs (1,7),(2,x),(3,13),(4,21),(5,37).  The value of x is
 (A): 10.5
 (B): 9.5
 (C): 12.5
 (D): 12.0

23. Which of the following Interpolation formula is used for unequally spaced points
 (A): Newton forward
 (B): Newton backward
 (C): Lagrange formula
 (D): Euler formula

24. 1)=1, P(3)=27, P(4)=64, Using Lagrange interpolation formula, the polynomial P(x) of degree 2 is:
  
25. Putting n=1 in the newton-Cote’s quadrature formula, we have
 (A): Trapezoidal rule
 (B): Simpson’s 1/3 formula
 (C): Simpson’s 3/8 formula
 (D): Euler’s formula

26. Putting n=3 in the newton-Cote’s quadrature formula, we have
 (A): Trapezoidal rule
 (B): Simpson’s 1/3 formula
 (C): Simpson’s 3/8 formula
 (D): Euler’s formula

27. Which of the following method required odd number of points for integration
 (A): Trapezoidal rule
 (B): Simpson’s  formula
 (C): Both Trapezoidal & Simpson
 (D): None of these

28. Using Trapezoidal rule, the value of     
 (A): 1.3662
 (B): 1.4107
 (C): 1.3570
 (D): 1.5706

29. Which of the following symbol is called backward difference operator
 (A): ?
 (B): ∇
 (C): δ
 (D): E

30. Newton divided difference method for interpolation can be used for
 (A):  Equal spaced points
 (B): Unequal spaced points
 (C): Not well defined
 (D): All of these

31. Which of the following is NOT a method to solve ordinary differential equation
 (A): Euler’s method
 (B): Picard’s method
 (C): Taylor series method
 (D): Romberg’s method

32. Euler’s formula for solving ordinary differential equation is
 
33. Which of the following is a Runga kutta 2nd order formula
 
34. Taylor series method is used for
 (A): Integration
 (B): Differentiation
 (C): Ordinary differential equation
 (D): Roots finding

35. Polynomials are most commonly used functions for interpolation because they are easy to
 (A): Evaluate
 (B): Differentiate
 (C): Integrate
 (D): Evaluate, differentiate, and integrate

36. To solve the ordinary differential equation using Runga kutta 2nd order, we need to write the equation  
  
37. Picard’s method is used to solve
 (A): Integration
 (B): Differentiation
 (C): Ordinary Differential equation
 (D): Roots finding

38. The inverse of a matrix A is written as   
      
 (A): Identity matrix
 (B): Null matrix
 (C): Singular matrix
 (D): Inverse matrix

39. he second forward difference 
40.